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Abstract I, •

-For the one-sided hypothesis testing problem'it is shown that it is

possible to reconcile.Bayesian evidence against E,0' expressed in terms

of the poste.ior probability that is true, with frequentist evidence

against %, expressed in terms of the p-value. In fact, for many classes

of prior distributions it is shown that the infimum of the Bayesian

posterior probability ofR,-is either equal to or bounded above by the

p-value. The results are in direct contrast to recent work of Berger 
.

and Sellke (1985) in the two-sided (point null) case, where it was found

that the p-value is much less than the Bayesian infimum. Some comments

on the point null problem are given. -  , ,.'...
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I. Introduction

In the problem of hypothesis testing, 'evidence' can be thought of as

a post-experimental (data-based) evaluation of the tenability of the

null hypothesis, HO. To a Bayesian, evidence takes the form of the

posterior probability that H0 is true, while to a frequentist, evidence

takes the form of the p-value, or significance level, of the test. If

the null hypothesis consists of a single point, it has long been known

that these two measures of evidence can greatly differ. The famous

paper of Lindley (1957) illustrates the possible discrepancy in the

normal case.

The question of reconciling these two measures of evidence has been

treated in the literature. For the most part, the two-sided (point null)

problem has been treated, and the major conclusion has been that the

p-value tends to overstate the evidence against H0 (that is, the p-value

tends to be smaller than a Bayesian posterior probability). Many references

can be found in Shafer (1982). However Pratt (1965) does state that in the

one-sided testing problem, the p-value is approximately equal to the

posterior probability of HO.

A slightly different approach to the problem of reconciling evidence

was taken by DeGroot (1973). Working in a fairly general setting, DeGroot

constructs alternative distributions and finds improper priors for which

the p-value and posterior probability match. DeGroot assumes that the

alternative distributions are stochastically ordered which, although he does

not explicitly state it, essentially puts him in the one-sided testing

problem.

.1
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Dickey (1977), in the two-sided problem, considers classes of priors,

and examines the infimum of Bayesian evidence against HO. As a measure of

Bayesian evidence Dickey uses the "Bayes factor," which is closely related

to the posterior probability of HO. He also concludes that the p-value

overstates the evidence against HO, even when compared to the infimum of

Bayesian evidence.

A recent paper by J. Berger and T. Sellke (1985) has approached the p

problem of reconciling evidence in a manner similar to Dickey's approach.

For the Bayesian measure of evidence they consider the infimum, over a

class of priors, of the posterior probability that H0 is true. For many0D

classes of priors it turns out that this infimum is much greater than the

frequentist p-value, leading Berger and Sellke to conclude that, "...

significance levels can be highly misleading measures of the evidence

provided by the data against the null hypothesis."

Although their arguments are compelling, and may lead one to question

the worth of p-values, their analyses are restricted to the problem of
p

testing a point null hypothesis. If, in fact, the p-value is a misleading

measure of evidence, discrepancies with Bayesian measures should emerge

in other hypothesis testing situations.

The point null hypothesis is perhaps the most used and misused

statistical technique. In particular, in the location parameter problem,

the point null hypothesis is more the mathematical convenience rather

than the statistical method of choice. Few experimenters, of whom we are

aware, want to conclude "there is a difference." Rather, they are looking

to conclude "the new treatment is better." Thus, for the most part, there

is a direction of interest in almost any experiment, and saddling an

experimenter with a two-sided test will not lead to the desired conclusions.
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In this paper we consider the problem of reconciling evidence in the
0

one-sided testing problem. We find, in direct contrast to the results of

Berger and Sellke, that evidence can be reconciled. That is, for many - -

classes of priors, the infimum of the Bayes posterior probability that H0

is true is either equal to or bounded above by the p-value.

In Section 2 we present some necessary preliminaries, including the

classes of priors we are considering and how they relate to those considered

in the two-sided problem. Section 3 contains the main results concerning

the relationship between Bayesian and frequentist evidence. Section 4

considers classes of priors that are biased toward H0, and Section 5
0

contains comments about testing a point null hypothesis.
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2. Preliminaries

We consider testing the hypotheses

HO: 0 (2.1) 
VS.

H: e > 0

based on observing X = x, where X has location density f(x- e). Throughout

this paper, unless explicitly stated, we assume that

i) f(-) is symmetric about zero

ii) f(x - 6) has monotone likelihood ratio (mlr).

Recall that i) and ii) imply that f(.) is unimodal.

If X = x is observed, a frequentist measure of evidence against H0 is

given by the p-value

p(x) = P(X > xle = 0) = f(t)dt . (2.2)

Lx

A Bayesian measure of evidence, given a prior distribution Tr(e), is the

probability that H0 is true given X = x,

f f(x-6 )ir(6 )def(x-e )1T(e)de.
P(HoIx) = P(e < Ix) = (2.3)

:f(x-6 )T(e)de

Our major point of concern is whether these two measures of evidence

can be reconciled, that is, can the p-value, in some sense, be regarded as

a Bayesian measure of evidence. Since the p-value is based on the objective

frequentist model, it seems apparent that, if reconciliation is possible,

it must be based on impartial prior distributions. By impartial we mean

-0
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that the prior distribution gives equal weight to both the null and

alternative hypotheses.

Four reasonable classes of distributions are given by

GA = {all distributions giving mass 1 to (-,0] and (0,)1

GS = {all distributions symmetric about zero) (2.4)

Gus = {all unimodal distributions symmetric about zero}

GNOR={all normal (0,-r 2 ) distributions, 0 < T .< .

For any class of priors, we can obtain a reasonably objective Bayesian

measure of evidence by considering inf P(Hoix), where the infimum is taken

over a chosen class of priors. We can then examine the relationship between

this infimum and p(x). If there is agreement, we can conclude that Bayesian

and frequentist evidence can be reconciled.

This development is, of course, similar to that of Berger and Sellke

(1985), who consider the two-sided hypothesis test HO: e : 0 vs. H1 : a 0,

using priors of the form

7TO if 0 =0

( (O) :() if 8 6 0,

and allow g(.) to vary within a class of distributions, similar to the classes

in (2.4). For any numerical calculations they choose 70 =o , asserting that

this provides an impartial prior distribution. We will return to this

question in Section 5.

For testing HO: < 0 vs. H1 : 0>0, we will mainly be concerned with

evidence based on observing x > 0. For x < 0, p(x) > 1 and inf P(HoIX)=

where the infimum is over any of the classes in (2.4). Thus, if x < 0, neither

a frequentist nor a Bayesian would consider the data as having evidence against

H0 , so ther is, in essence, nothing to be reconciled.
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3. Symmetric Prior Distributions

In this section we consider prior distributions contained in the classes

given in (2.4). Our goal is to calculate inf P(HoIx) for each of these

classes, and relate the answer to p(x). In some cases we do not calculate

inf P(HoIX) exactly, but rather obtain an upper bound on the infimum. This

is accomplished by calculating the infimum exactly for smaller classes of

distributions.

For the one-sided testing problem, the class GA is too large to be

of use, as the following theorem shows.

Theorem 3.1: For the hypotheses in (2.1), if x > 0, then

inf P(HoIX) = 0
ireGA

Proof: Consider a sequence of priors

t if e = -k
T K(e)=

K g(e) if e > 0

where g()e= Then

P(HOIx) f(x + k)

f(x+k) +f' f(x-e)g(e)de

and it is easy to see that lim P(H0 Ix) = 0, establishing the result. 0

Although we cannot obtain explicit answers for the class Gs9 we can get

some interesting results for the smaller class contained in GS,

G2ps = fall two-point distributions symnetric about 0).

-. . .-.. ....-........... , ....- • " ,"
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For TrEG 2pS, we have 7r(e) = if 0 = +k, and hence

P(HoIX) f(x-k +f(x+k) (3.1)

Since f has mlr, it follows that, for x > 0, P(HoIx) is decreasing in

k. Therefore, for x > 0,

inf P(HoIX) = lim rx)+f(x+ ) " (3.2)
AA T:G 2pS  k- -)+~~

The following theorem establishes that p(x) is an upper bound on this

quantity.

Theorem 3.2: For the hypotheses in (2.1), if x > 0,

inf P(HoIx) inf P(HoIx) f p(x) (3.3)
e~s  teG2ps

Proof: The inequality

ff(x+k)

<p(x)
f£x-k)+f(x+k) px

is equivalent to

f(k-x)p(x) - f(k+x)(l-p(x)) > 0

To establish (3.3), it suffices to establish the weaker inequality,

lim [f(k-x)p(x) - f(k+x)(1-p(x))] > 0 . (3.4)
" ~~k-

KO '"-

6 Now

f(k-x)p(x) - f(k+x)(1-p(x))

= ff(k-x)f(x+z) - f(k+x)f(-x+zdz . (3.5)

00
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Let x 1  k-x, x2 : k+x, 61 : 0, and e2 : k-z. The integrand is of the

form f(xl-el)f(x2-02 ) - f(x2-OI)f(xl-0 2). Since x > 0, x2 > x1, and

02 e 1 if and only if k > z. Thus the fact that f has mlr implies

that the integrand is nonnegative if z < k and nonpositive if z > k.

It also folbws from the assumptions on f that lim f(k-x) = lim f(k+x) exists
k--: k-

and equals zero. For z > k, f(k-x)f(x+z) - f(k+x)f(-x+z) < 0 so

if(k-x)f(x+z) - f(k+x)f(-x+z)I < f(k+x)f(-x+z)<f(x)f(-x+z), (3.6)

the last inequality following since f is unimodal and x > 0. Thus, by the

dominated convergence theorem,

lim [f(k-x)f(x+z) f(k+x)f(-x+z)]dz = 0 . (3.7)
k-*c k

hence,

lim[f(k-x)p(x) - f(k+x)(l - p(x))]
k-K= (3.8)

= lim [f(k-x)f(x+z) - f(k+x)f(-x+z)]dz > 0
k-ocof0

establishing (3.4) and proving the theorem. 0

The inequality between inf P(H0lx) and p(x) is, in fact, strict in

in many cases. Table 1 gives explicit expressions for some common

distributions.

The Cauchy distribution, which does not have m9r, does not attain
its infimum at k = but rather at k = (x2+l) Even so, it is still

the case that the p-value is greater than inf P(H0 1x) for the Cauchy

distribution.

0[

0 . . • ...
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Table 1. P-values and inf P(H0 lx) for the class of
symmetric two-point distributions (x > 0)

Distribution p(x) inf P(HoIX)

normal 1 - O(x) 0

double exponential 1 (I + e2x) l

logistic (l + e) " (1 + e 2X) -

Cauchy 1 2 +n 12 2
2T+2(x-(x 2++ ) +(x+(x +l)1)

We now turn to the class of distributions Gus, where we again obtain the

p-value as an upper bound on the infimum of the Bayesian evidence. We can,

in fact, demonstrate equality between p(x) and inf P(HoIx) for two classes

of distributions contained in GUS. We first consider

Us = fall symmetric uniform distributionsi.

Theorem 3.3: For the hypotheses in (2.1), if x > 0,

inf P(HoIX) = p(x)
7re UEs

Proof: Let 7(e) be uniform (-k,k). Then

H[ 0 
=f f(x-O)de-k

( f(x-O)deJ-k

and

d f kf(x-k)+f(x+k) x )

_,P(Hjx +fk ) (x-k)+f(x+R) " P(HoIX " (3.10)

ikf(x-e)de X]f-k "

~........................................ .....£', i ..- m m.... ....... .... ......... ".....
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We will now establish that P(Hjx), as a function of k, has no minimum on

the interior of (.0,oo). Suppose k =k 0 satisfies

d~P(HjxJ.. = 0 .(3.11)
dF Ol~lk~k0

It is straight forward to establish that the sign of the second derivative,

evaluated at k =kos is given by

sgn d 2 j k-k sgn d f+ k k (3.12)

Since f has m2tr, the ratio f(x+k)/f(x-k) is decreasing in k for fixed x > 0.

Therefore, the sign of (.3.12) is always negative, so any interior extrenum

can only be a maximum. The minimum is obtained on the boundary, and it is

straightforward to check that

Jf(x-e)de 0
kinf P(H0Ix) =lim ~k= f(x-e)de =p(x) .0

7TU f(x-e)de

A similar result can be obtained for another class of distributions,

GMU, which consists of mixtures of symmietric uniform distributions. Let G

be the set of all densities g on [0,00) such that the scale parameter family

ta- g(k/a), a >0) has mlr in k. Define

GMU =f: r)=f(k I(-k)O g(k/)dk, geG, a>01

The class GM contains many familiar distributions symmetric about zero,

including all normal and t distributions.

Theorem 3.4: For the hypotheses in (2.1), if x > 0,

lnf P(HOIx) =p (x) .(.3

iTeGMU



Proof: Let ()eGMu. By interchanging the order of integration and using

the symmetry of f we obtain

(2k)Y I(k/a) f(z)dzdk

P(H0 Ix) = -x+kf d (3.14)
(2ka)'g(k/) f(z)dzdk

We first show that, for fixed g,

inf P(HoIx) = lim P(HoIX) . (3.15)
0<a<

-

For notational convenience define

h(x,a) = g(y/a)f(y-x)dy

Since the denominator of (3.14) has derivative equal to h(-x,a)+h(x,a) > 0,
S

it follows that

sgn P(HoIx = sgn h(-x,a) +h(x,) "P(HoIX

We now establish that if P(H0 x) has an extremum for 0 < a < , that extremum

must be a maximum. Suppose that a = a0 satisfies

da P(Ho x) aY

do ~j x) " -

Then

sgn P(H) = sgn 0A2 oxl~ ah (-x,a)+h(xG)a o= -a,:::':

(3.16)

= sg01 (x,a)
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Since both f(k-x) and a- g(k/a) have mir, it follows from the Basic Composition

Formula of Karlin (1968, p. 17) that h(x,) also has mir. Therefore, since

x > 0, the sign of the last expression in (3.16) is negative, showing that

any interior extremum must be a maximum. We therefore have

inf P(Holx) = mintlim P(HoIx), lim P(Hojx)}
0<C<0 a- 0 a-)"*

But from (3.14) it is easily verified, using l'Hopital's rule, that

lim P(HoIx) = 1 lim P(Ho=x) p(x) <1

Moreover, since we obtain the same infimum, p(x), regardless of the choice

of geG, we have that

inf P(Ho[x) = inf inf P(HoIx) = inf p(x) = p(x) .0
TrtGMU gcG 0<a<- gEG

We can summarize the results of the above two theorems, and the relationship

to Gus in the following corollary.

Corollary 3.1: For the hypotheses in (2.1), if x > 0,

inf P(HoIx) _ inf P(Hojx) = inf P(HoIx) = p(x)
IEeGus Tre Us  TTGMU

This corollary is in striking contrast to the results of Berger and

Sellke (1985). In the two sided problem with a point null hypothesis, they

argued that using impar tial prior distributions does not lead to any

reconciliation between inf P(HoIx) and p(x). In fact, for the cases they

considered, the Bayesian infimum was much greater that p(x). In contrast,

we find that for classes of reasonable, impartial priors, such as GMU, we

obtain equality between inf P(HoIx) and p(x), showing that, in fact, p(x)

is a conservative measure of evidence against the null hypothesis.
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We close this section by examining two important special cases. In the

first case we again obtain equality between p(x) and P(HoIx).

Theorem 3.5: If f(x-e) = (2o2)- exp'- x-8)2/ 2  then for the hypothesis in

(2.1). if x > 0,

inf P(HoIX) p(x)
TrEG

Proof: The result is easily established by noting

P(HoIx) = P z < (Z T) ) , Z ~ n(O,l)

which attains its infimum at T2 = 00

We next consider the Cauchy distribution, to again examine the situation

when the assumption of mlr does not obtain. For the class Us, the symmetric
s2

uniform distributions, we calculate inf P(H0 x) where f(x-e) = [n(l+(x-e) 2)1

For n(e) = Uniform (-k,k) and it is straightforward to calculate

=tan -(x+k) - tan-1 (x)
P(H0Ix) - 1 1

tan (x+k) tan- (x-k)

For fixed x > 0, P(HoIx) is not monotone in k, but rather attains a unique

minimum at a finite value of k. Table 2 lists the minimizing values of k,

inf P(Hojx), and the p-value for selected values of x.

Examination of Table 2 shows once again that inf P(H0Ix) is smaller than

p(x), this observation held true for more extensive calculations that are

not reported here. Therefore, even in the case of the Cauchy distribution,

the infimum of the Bayesian measure of evidence is smaller than the

frequentist p-value.
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Table 2. P-values and inf P(H0Ix) for X -Cauchy,
infimun over U

s

x k min p(x) inf P(H 0 x)

.2 2.363 .437 .429

.4 2.444 .379 .363

.6 2.570 .328 .306

.8 2.727 .285 .260

1.0 2.913 .250 .222

1.2 3.112 .221 .192

1.4 3.323 .197 .168

1.6 3.541 .178 .148

1.8 3.768 .161 .132

2.0 3.994 .148 .119

2.5 4.572 .121 .094

3.0 5.158 .102 .077

3.5 5.746 .089 .065

4.0 6.326 .078 .056

5.0 7.492 .063 .044

10.0 13.175 .032 .020

25.0 29.610 .013 .007

50.0 56.260 .006 .004

75.0 82.429 .004 .002

100.0 108.599 .003 .002
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4. Biased Prior Distributions

In this section we examine two cases where the prior distributions

are biased toward HO, and begin to see some of the reasons for the large
00

discrepancies between Bayesian and frequentist evidence in the two-sided

case.

Again consider HO: 0 < 0 vs. Hi: 0 > 0 where X - n(,o 2),a 2 known.

Consider the class of priors S

2 2Ge0  {n eos ) distributions, 0 < 0 (fixed), 0 < T < 0} .

The class Ge. is clearly biased toward H0, however, if we calculate .
0

inf P(Hojx) over this class the result is again p(x).

For any reG 0 , it is easy to calculate
0

P(H0 Ix) = P -( 2 2 + alT (4.1)-( T-) (2+72) 0 .L~[:

where Z - n(0,1). For x > 0, P(Hojx) is a decreasing function of T2 , so
2I

the infimum is attained at T 0.

inf P(HoIX)= P(z < -x/a) p(x). (4.2)
TG 0

The effect of the bias for H0 is diminished at 2 increases, resulting in a

limit which is independent of . This is a different situation from the

point-null case, where the prior probability on the point null is unaffected

by any limiting operation.

We next consider a family of priors in which every member is biased

toward H0 by the same amount. Suppose that an experimenter is willing toif_ .

assert, for every k > 0, it is q times more likely that Oec(-k,O) than

ec(O,k). This belief may be reflected in the prior

......................~~~ .. . .. . . .. . .. . . .. . .. . .
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C- -k e< 0
T() j 1 (4.3)

(.k(l+q) 0 e

Let Gq denote the class of all of these priors. Then, by an argument similar

to that used in Theorem 2.2, if f(x-6) has mlr and x > 0, for testing

HO: 0 < 0 vs. HI : 0>0 we have

inf P(HofX) p x) (4.4)
1TGq

The quantity in (4.4) is greater than p(x) if q > 1 (prior biased toward HO) and

less than p(x) if q < I (prior biased toward Hi). Therefore, (4.4) is a very

reasonable measure of evidence, taking into account both prior beliefs and sample

information. However, even in this biased case, we do not observe the same

discrepancies as Berger and Sellke did in the point-null problem. For

example, we might ask, "How large must q be in order that inf P(HoIX) is

twice as large as p(x)," in order to get some idea of how the bias for H0

affects the measure of evidence. For p = .01, .05, .1, and various values

of m, we can solve for q such that inf P(HoIx) = mp. Some values are

given in Table 3.

For small m, q is approximately equal to m. However for larger values

of m, q increases rapidly, showing that the prior must be very biased

toward H0 in order to achieve a large increase in inf P(HoIX).

. .. . ... _ ... . . . . . . . . ... .. . . . . . .. .. . . . . . . . . .
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Table 3: For selected p-values, bias toward H0 (q)
necessary in order for inf P(HOjX) =mp(x)

p=. 1

m 2 4 6 8

q 2.25 6,00 13.50 36.00

p= .05

m 2 4 6 8 10 12 16

q.1 4.75 8.4 12.67 19.00 28.50 76.00

p= .01

m 2 4 6 8 10 20 50 75

q.2 4.13 6.2 8.61 11.00 24.75 99.00 297.00
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5. Comments

For the problem of testing a one-sided hypothesis in a location

parameter family, it is possible to reconcile evidence between the Bayesian

and frequentist approaches. The frequency p-value is, in many cases, an

upper bound on P(HoIx), showing that it is possible to regard the p-value

as assessing "the probability that H0 is true." Even though this phrase has

no meaning within frequency theory, it has been argued that practitioners

sometimes attach such a meaning to the p-value. The results in this paper

show that, for testing a one-sided hypothesis, such a meaning can be

attached to the p-value.

The discrepancies observed by Berger and Sellke in the two-sided

(point null) case do not carry over to the problems considered here. This

leads to the question of determining what factors are crucial in

differentiating the two problems. It seems that if prior mass is concentrated

at a point (or in a small interval), then discrepancies between Bayesian

and frequentist measures will obtain. In fact, Berger and Sellke note

that for testing HO: a = 0 vs. H1 : a > 0, the p-value and the Bayesian

infimum are quite different. (For example, for X n(e,l), an observed

x = 1.645 will give a p-value of .05, while, if mass Iis concentrated at

zero, inf P(Hojx = 1.645) = .21).

Seen in another light, however, it can be argued that placing a point

I
mass of T at H0 is not representative of an impartial prior distribution.

For the problem of testing HO: 0 <0 vs. H1: a >0, consider priors of the

form

w =(e) =7rh(e) + (1 - )g(e) (5.1)

0 0.
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where T 0 is a fixed number, and h(O) and g(e) are proper priors on

(-o, 0) and (0, c) respectively. It then follows that, for x > 0,

Tr 0f f(x-e)h(e)de

sup P(HoIX) = sup (5.1)
h h 0- f(x-e)h()de +(l-T) f(x-e)g(e)de

Trof(X) -
0  ((5.2)

Tof(x)+(l -Tr )f(x-e)g(e)dO

and the last expression is equal to P(oIx) for the hypotheses HO: e = 0

vs. H1: 0>0 with prior 1T(e) = 7r if 0 = 0 and Tr(0) (1 - v)g(e) if e > o.

Thus, concentrating mass on the point null hypothesis is biasing the prior

in favor of H0 is much as possible in this one-sided testing problem.

The calculation in (5.2) casts doubt on the reasonableness of regarding

7T0 : -as impartial. In fact, it is not clear to us if any prior that0 2
concentrates mass at a point can be viewed as an impartial prior.

Therefore, it is not surprising that the p-value and Bayesian evidence *o
=1differ in the normal example given above. Setting w0  y. actually reflects

a bias toward HO, which is reflected in the Bayesian evidence.

To a Bayesian, the fact that evidence can be reconciled with the p-values

allows for a Bayesian interpretation of a p-value and the possibility of

regarding a p-value as an objective assessment of the probability that H0 is

true. It also, to a Bayesian, gives the p-value a certain amount of

respectability. To a frequentist, the p-value (or significance level) has

long been regarded as an objective assessment of the tenability of H0, an

interpretation that survives even within the Bayesian paradigm.

.. . . . . . . . . .. . . . . . . . . . . . . . ., .. ...

. . . . . . .. - . . . . . . . .- .
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